20 research outputs found

    Meeting Global Cooling Demand with Photovoltaics during the 21st Century

    Full text link
    Space conditioning, and cooling in particular, is a key factor in human productivity and well-being across the globe. During the 21st century, global cooling demand is expected to grow significantly due to the increase in wealth and population in sunny nations across the globe and the advance of global warming. The same locations that see high demand for cooling are also ideal for electricity generation via photovoltaics (PV). Despite the apparent synergy between cooling demand and PV generation, the potential of the cooling sector to sustain PV generation has not been assessed on a global scale. Here, we perform a global assessment of increased PV electricity adoption enabled by the residential cooling sector during the 21st century. Already today, utilizing PV production for cooling could facilitate an additional installed PV capacity of approximately 540 GW, more than the global PV capacity of today. Using established scenarios of population and income growth, as well as accounting for future global warming, we further project that the global residential cooling sector could sustain an added PV capacity between 20-200 GW each year for most of the 21st century, on par with the current global manufacturing capacity of 100 GW. Furthermore, we find that without storage, PV could directly power approximately 50% of cooling demand, and that this fraction is set to increase from 49% to 56% during the 21st century, as cooling demand grows in locations where PV and cooling have a higher synergy. With this geographic shift in demand, the potential of distributed storage also grows. We simulate that with a 1 m3^3 water-based latent thermal storage per household, the fraction of cooling demand met with PV would increase from 55% to 70% during the century. These results show that the synergy between cooling and PV is notable and could significantly accelerate the growth of the global PV industry

    Meeting Global Cooling Demand with Photovoltaics during the 21st Century

    Full text link
    Space conditioning, and cooling in particular, is a key factor in human productivity and well-being across the globe. During the 21st century, global cooling demand is expected to grow significantly due to the increase in wealth and population in sunny nations across the globe and the advance of global warming. The same locations that see high demand for cooling are also ideal for electricity generation via photovoltaics (PV). Despite the apparent synergy between cooling demand and PV generation, the potential of the cooling sector to sustain PV generation has not been assessed on a global scale. Here, we perform a global assessment of increased PV electricity adoption enabled by the residential cooling sector during the 21st century. Already today, utilizing PV production for cooling could facilitate an additional installed PV capacity of approximately 540 GW, more than the global PV capacity of today. Using established scenarios of population and income growth, as well as accounting for future global warming, we further project that the global residential cooling sector could sustain an added PV capacity between 20-200 GW each year for most of the 21st century, on par with the current global manufacturing capacity of 100 GW. Furthermore, we find that without storage, PV could directly power approximately 50% of cooling demand, and that this fraction is set to increase from 49% to 56% during the 21st century, as cooling demand grows in locations where PV and cooling have a higher synergy. With this geographic shift in demand, the potential of distributed storage also grows. We simulate that with a 1 m3^3 water-based latent thermal storage per household, the fraction of cooling demand met with PV would increase from 55% to 70% during the century. These results show that the synergy between cooling and PV is notable and could significantly accelerate the growth of the global PV industry

    HAWC+/SOFIA Multiwavelength Polarimetric Observations of OMC-1

    Get PDF
    We report new polarimetric and photometric maps of the massive star-forming region OMC-1 using the HAWC+ instrument on the Stratospheric Observatory for Infrared Astronomy. We present continuum polarimetric and photometric measurements of this region at 53, 89, 154, and 214 ÎŒm at angular resolutions of 5'', 8'', 14'', and 19'' for the four bands, respectively. The photometric maps enable the computation of improved spectral energy distributions for the region. We find that at the longer wavelengths, the inferred magnetic field configuration matches the "hourglass" configuration seen in previous studies, indicating magnetically regulated star formation. The field morphology differs at the shorter wavelengths. The magnetic field inferred at these wavelengths traces the bipolar structure of the explosive Becklin–Neugebauer/Kleinman–Low outflow emerging from OMC-1 behind the Orion Nebula. Using statistical methods to estimate the field strength in the region, we find that the explosion dominates the magnetic field near the center of the feature. Farther out, the magnetic field is close to energetic equilibrium with the ejecta and may be providing confinement to the explosion. The correlation between polarization fraction and the local polarization angle dispersion indicates that the depolarization as a function of unpolarized intensity is a result of intrinsic field geometry as opposed to decreases in grain alignment efficiency in denser regions

    Effects of temperature, nutrients, organic matter and coral mucus on the survival of the coral pathogen, Serratia marcescens

    No full text
    Serratia marcescens is an enteric bacterium that causes white pox disease in elkhorn coral, Acropora palmata; however, it remains unclear if the pathogenic strain has adapted to seawater or if it requires a host or reservoir for survival. To begin to address this fundamental issue, the persistence of strain PDL100 was compared among seawater and coral mucus microcosms. Median survival time across all conditions ranged from a low of 15 h in natural seawater [with a first-order decay constant (k) = −0.173] at 30°C to a maximum of 120 h in glucose-amended A. palmata mucus (k = −0.029) at 30°C. Among seawater and mucus microcosms, median survival time was significantly greater within Siderastrea siderea mucus compared with seawater or mucus of Montastraea faveolata or A. palmata (P \u3c 0.0001). In seawater, the addition of phosphate and especially glucose resulted in significant improvements in survival (P \u3c 0.001), while only the addition of glucose resulted in significant improvement in survival in A. palmata mu us (P \u3c 0.0001). Increasing the temperature of seawater to 35°C resulted in a significantly slower decay than that observed at 30°C (P \u3c 0.0001). The results of this study indicate that PDL100 is not well-adapted to marine water; however, survival can be improved by increasing temperature, the availability of coral mucus from S. siderea and most notably the presence of dissolved organic carbon

    Photovoltaic Testing for Energy Yield Predictions with Sensitivity to Spectral Shifts

    No full text
    Solar spectra change depending on location, weather, and time of day around the world. These spectral variations affect the performance of photovoltaic (PV) cells and modules and are not captured by standard testing procedures. We introduce a method to classify spectra and use this classification to develop a testing procedure to reproduce spectral conditions of locations within various climate zones. With LED solar simulators becoming commercially available and representative sets of outdoor spectra found, the gap between real world outdoor testing and indoor testing is closing. With LED-based testing of CdTe, Si, and GaAs PV cells, we show that the effects of spectral shifts on short circuit current are captured, demonstrating the potential use of this method for more accurate testing of solar modules indoors

    Tabula Rasaforn-Cz silicon-based photovoltaics

    No full text
    High-temperature annealing, known as Tabula Rasa (TR), proves to be an effective method for dissolving oxygen precipitate nuclei in n-Cz silicon and makes this material resistant to temperature-induced and process-induced lifetime degradation. Tabula Rasa is especially effective in n-Cz wafers with oxygen concentration >15 ppma. Vacancies, self-interstitials, and their aggregates result from TR as a metastable side effect. Temperature-dependent lifetime spectroscopy reveals that these metastable defects have shallow energy levels ~0.12 eV. Their concentrations strongly depend on the ambient gases during TR because of an offset of the thermal equilibrium between vacancies and self-interstitials. However, these metastable defects anneal out at typical cell processing temperatures ≄850°C and have little effect on the bulk lifetime of the processed cell structures. Without dissolving built-in oxygen precipitate nuclei, high-temperature solar cell processing severely degrades the minority carrier lifetimes to below 0.1 millisecond, while TR-treated n-Cz wafers after the cell processing steps exhibit carrier lifetimes above 2.2 milliseconds

    Human Sewage Identified as Likely Source of White Pox Disease of the Threatened Caribbean Elkhorn Coral

    No full text
    Caribbean elkhorn coral, Acropora palmata, has been decimated in recent years, resulting in the listing of this species as threatened under the United States Endangered Species Act. A major contributing factor in the decline of this iconic species is white pox disease. In 2002, we identified the faecal enterobacterium, Serratia marcescens, as an etiological agent for white pox. During outbreaks in 2003 a unique strain of S. marcescens was identified in both human sewage and white pox lesions. This strain (PDR60) was also identified from corallivorious snails (Coralliophila abbreviata), reef water, and two non-acroporid coral species, Siderastrea siderea and Solenastrea bournoni. Identification of PDR60 in sewage, diseased Acropora palmata and other reef invertebrates within a discrete time frame suggests a causal link between white pox and sewage contamination on reefs and supports the conclusion that humans are a likely source of this disease

    Representative identification of spectra and environments (RISE) using k‐means

    No full text
    Spectral differences affect solar cell performance, an effect that is especially visible when comparing different solar cell technologies. To reproduce the impact of varying spectra on solar cell performance in the lab, a unique classification of spectra is needed, which is currently missing in literature. The most commonly used classification, average photon energy (APE), is not unique, and a single APE value may represent various spectra depending on location. In this work, we propose a classification method based on an iterative use of the k‐means clustering algorithm. We call this method RISE (Representative Identification of Spectra and the Environment). We define a set of 18 spectra using RISE and reproduce the spectral impact on energy yield for various solar cell technologies and locations. We explore effects on yield for commercially available solar cell technologies (Si and CdTe) in four locations: Singapore (fully humid equatorial climate), Colorado (cold arid), Brazil (warm, humid, and subtropical), and Denmark (fully humid warm temperature). We then reduce our findings to practice by implementing the spectrum set into an LED current–voltage (IV) tester. We verify our performance predictions using our set of representative spectra to reproduce energy yield differences between Si solar cells and CdTe solar cells with an average error of less than 1.5 ± 0.5% as compared to over 5% when using standard testing conditions

    Solubility and Diffusivity

    No full text
    | openaire: EC/FP7/307315/EU//SOLARXLight-and elevated temperature-induced degradation (LeTID) is a detrimental effect observed under operating conditions in p-Type multicrystalline silicon (mc-Si) solar cells. In this contribution, we employ synchrotron-based techniques to study the dissolution of precipitates due to different firing processes at grain boundaries in LeTID-Affected mc-Si. The synchrotron measurements show clear dissolution of collocated metal precipitates during firing. We compare our observations with degradation behavior in the same wafers. The experimental results are complemented with process simulations to provide insight into the change in bulk point defect concentration due to firing. Several studies have proposed that LeTID is caused by metal-rich precipitate dissolution during contact firing, and we find that the solubility and diffusivity are promising screening metrics to identify metals that are compatible with this hypothesis. While slower and less soluble elements (e.g., Fe and Cr) are not compatible according to our simulations, the point defect concentrations of faster and more soluble elements (e.g., Cu and Ni) increase after a high-Temperature firing process, primarily due to emitter segregation rather than precipitate dissolution. These results are a useful complement to lifetime spectroscopy techniques, and can be used to evaluate additional candidates in the search for the root cause of LeTID.Peer reviewe
    corecore